

EARLE M. JORGENSEN COMPANY

REFERENCE BOOK

ALLOY • ALUMINUM • BRASS • BRONZE CARBON • CAST IRON • CHROME • NICKEL STAINLESS • SUPER ALLOY • TITANIUM BAR • PIPE • PLATE • SHEET • TUBE

www.emjmetals.com

SECTION H

AIRCRAFT ALLOY STEELS

4130 Bars
4130 Sheets and Plates
4140 Bars
E-4340 Bars
E-4340 Plates
4620 Bars 13
9310 Bars14-15
E-52100 Bars
4330 Modified VAR Bars 17
300M VAR Bars
NITRIDING #3 Bars 19
HS 220 — 18 Bars 20
AIRCRAFT TUBING — Refer to Section K

AIRCRAFT STAINLESS STEELS — Refer to Section I

Aircraft alloy steels are grades intended for important or highly stressed parts and components in the aerospace industry. Special steelmaking practices, more rigid inspection techniques, and more restrictive selection are necessary to meet the necessarily rigid quality standards.

There are three levels of quality which have been accepted by producers and users of aircraft steel:

AIRCRAFT QUALITY-This is the most commonly specified quality for general aerospace applications. It is defined in SAE specification AMS 2301, which outlines the procedure for determining compliance with cleanliness requirements by the magnetic particle inspection method.

SPECIAL AIRCRAFT QUALITY-This level of quality places minimum values on ductility in the transverse direction. It is also known as "High Transverse Quality", as the steel is evaluated by a number of tension tests normal to the direction of rolling (transverse) performed to obtain a comprehensive sampling of a heat of steel.

PREMIUM AIRCRAFT QUALITY-This is the ultimate quality that can currently be obtained in production quantities and is usually applied to the most critical parts and components. Steel conforming to this quality level is produced by the consumable electrode vacuum arc remelting technique. Specification AMS 2300 defines this quality and outlines testing requirements. Steels described herein which meet this quality are designated by the letters VAR (Vacuum Arc Remelt) or CEVM.

TO THE AIRCRAFT INDUSTRY

We Specialize in aircraft quality alloy and stainless steels. The items listed in the following two sections represent one of the largest and most complete service center stocks in North America. We endeavor to serve the aircraft industry by stocking the types and sizes recommended by the National Aircraft Standards Committee, as well as other items which are in common use.

Your attention is invited to the following pertinent information:

REVISIONS OF SPECIFICATIONS

The specifications (Military, Army-Navy, Federal, etc.) shown herein are the latest in effect at the time of publication of this stock list. In the event a specification is revised or supplemented by the issuing agency, steel for our stock will be ordered accordingly. We shall be pleased to furnish certified documents stating the exact specification to which our steel conforms.

CERTIFIED TEST REPORTS

Certified chemical and physical test reports for the heat treated grades listed herein, and certified chemical reports for other grades, are supplied automatically to purchasers of aircraft steels.

ULTRASONIC TESTING

This testing is performed when required by specification or when material is intended for a critical application.

High-frequency sound waves, generated by a crystal, are transmitted through the material to be tested. If a discontinuity, such as pipe, internal rupture, or inclusion is encountered, the waves reflect in such a way that a "picture" indicating the extent of the defect can be read on an oscilloscope. Testing can be performed by the "immersion" method (where the sound waves are transmitted through a liquid medium) or by the "dry contact" method (where waves pass directly from the crystal to the material to be tested).

Please contact us for further details if your application requires ultrasonic testing.

CLASSIFICATION OF PHYSICAL AND SURFACE CONDITIONS OF AIRCRAFT ALLOY STEELS

Following is a summary of the symbols used in military (MIL) specifications to designate various conditions of materials.

Physical Condition

- A As Forged
- **B** As Rolled
- c Annealed
- D Normalized
- E Normalized & Tempered
- F Quenched & Tempered

Surface condition

- 1 As Forged or Rolled
- 2 Pickled or Blast Cleaned
- 3 Rough Turned
- 4 Cold Finished
- 5 Turned, Ground, & Polished

4130 AIRCRAFT QUALITY ALLOY BARS UNS G41300 AMS-S-6758 AMS 6370 AMS 2301 Color Marking Normalized Bars-Ends painted Pink

Heat Treated Bars-Ends painted White

This chromium-molybdenum alloy is one of the most widely used aircraft steels because of its combination of weldability, ease of fabrication, and mild hardenability. In relatively thin sections it will respond to heat treatment to high strength levels and yet in the normalized condition it has adequate strength for many applications. When resistance to wear and abrasion is required, it may be nitrided.

This grade is a quality product melted under the best steelmaking practices for aircraft quality steels. It is vacuum degassed to meet the magnetic particle inspection standards of AMS 2301.

ANALYSIS

		Р	S			Ni	
С	Mn	Max.	Max.	Si	Cr	Max.	Мо
.28/.33	.40/.60	.025	.025	.15/.35	.80/1.10	.25	.15/.25

APPLICATIONS — Intended for use in the manufacture of parts and components with sections 1/2" thick or less at time of heat treatment which require a through-hardening steel capable of developing hardness as high as Rockwell "C" 35, and also for parts with greater thickness requiring proportionately lower hardness. It may be used for parts requiring fusion welding. Hardenability and weldability are considered equivalent to 8630.

HARDENABILITY — As required by AMS-S-6758, minimum end-quench hardenability values for this grade are Rockwell "C" 35 at ⁵/16" and Rockwell "C" 28 at ⁸/16".

MECHANICAL PROPERTIES — The following properties apply to material in Physical Condition F (hardened and tempered):

Tensile Strength	Yield Strength	Elongation	Reduction
(psi)	(psi)	in 2"	of Area
125,000 Min.	100,000 Min.	17% Min.	55% Min.

HEAT TREATMENT

Normalize-1600°/1700°F Austenitize-1500°/1600°F Quench-Oil Temper-700º/1250°F

4130 AIRCRAFT SQUARES

Stock Lengths 12' and 20'

	it, Lbs.
Size Estimated Weight, Lbs. Size Estimated Weight, Lb	
in Per 12-Ft. in Per 20-F Inches Foot Bar Inches Foot Bar	20-Ft. Bar
¹ / ₄ .2127 2.552 1 ³ / ₄ 10.42 208.4	208.4
$\frac{3}{16}$.3323 3.988 3/8 4786 5.743 2 13.61 272.3	272.3
7/16 .6514 7.817 1/4 17.23 344.6	344.6
$\frac{1}{2}$.8508 10.21 $\frac{1}{2}$ 21.27 425.4	25.4
³ / ₄ 1.914 22.97 3 30.63 612.6	612.6
$\frac{7}{8}$ 2.606 31.27 $\frac{1}{2}$ 41.69 833.8	33.8
1/8 4.307 51.69 4 54.45 1089	1089
$\frac{1/4}{3/6}$ 5.318 63.81 5 85.08 1702	1702
¹ / ₂ 7.657 91.89 6 122.5 2405	2405

			ノ 4	130 AIF	RCRAFT	ROUNDS	5		
	\cup			Stock L	engths 1	2' and 20'			
	No Co Physi Surfa	ormalize old Finis cal Cond ice Cond	ed & hed dition D dition 4	Heat Treated, Cold Fin. & Stress Relieved Physical Condition F Surface Condition 4			Hot Rolled Normalized Physical Condition D Surface Condition 1		
9	Size	Dor	10 Et	Size	ESL. W	12 E4	Size	LSL. We	20 Et
In	ches	Foot	Bar	Inches	Foot	Bar	Inches	Foot	Bar
	1/8	.0418	.5012	1/8	.0418	.5012	3/4	1.504	30.07
	^{3/} 16	.0940	1.128	31.0	0040	1 100	¹³ /16 7/8	1.765	35.29 40.93
	1/4	.1671	2.005	9/16	.0940	1.128	^{15/} 16	2.349	46.98
	%32	.2115	2.538	1/4	.1671	2.005	1	2.673	53.46
	5/16	.2610	3.132	E,	0040	0.400	1/4	4.176	83.53
	3/8	.3759	4.510	୬16	.2610	3.132	3/8	5.053	101.1
	13/ ₃₂	.4410	5.290	3/8	.3759	4.510	5/8	6.014 7.058	120.3
	7/ ₁₆	.5116	6.139				3/4	8.186	163.7
	1/2	.6682	8.019	1/16	.5116	6.139	^{7/8}	9.397	187.9 213.8
	^{9/} 16	.8457	10.15	15/ ₃₂	.5870	7.050	- 1/8	12.07	241.4
	5/8	1.044	12.53				1/4 3/9	13.53	270.6
	11/16	1.263	15.16	1/2	.6682	8.019	1/2	16.71	334.1
	3/4	1.504	18.04	17/32	.7540	9.050	5/8 3/4	18.42	368.4
	13/16	1.765	21.17	-			7/8	20.21	404.3
	7/8	2.046	24.56	9/16	.8457	10.15	3	24.06	481.1
	15/16	2.349	28.19	5/8	1.044	12.53	1/8 1/4	26.10	522.0 564.6
1		2 673	32.07				3/8	30.45	608.9
•	1/16	3 017	36.21	^{11/} 16	1.263	15.16	1/2 5/8	32.74 35.12	654.8 702.5
	1/8	3 383	40 59	3/4	1 504	18 04	3/4	37.59	751.7
	3/16	3 769	45.23	74	1.001	10.01	4	42.77	855.3
	1/4	4 176	50.12	13/16	1.765	21.17	1/2	54.13	1083
	5/16	4 604	55.25	7/8	2 046	24 56	3/4 5	60.31	1206
	3/9	5.053	60.64	70	2.040	24.00	1/4	73.67	1473
	7/16	5 523	66 28	15/ ₁₆	2.349	28.19	1/2 3/.	80.86	1617
	1/2	6.014	72 17	1	2 673	32.07	^{3/4} 6	88.37 96.22	1767
	72 5/o	7 058	84 70	1	2.075	52.07	1/4	104.4	2088
	3/4	8 186	08.23	¹ /16	3.017	36.21	1/2 3/4	112.9	2259
	-74 7/o	0.100	112.8	1/0	3 383	10 50	7	131.0	2619
2	-76	9.397 10.60	172.0	.76	5.565	40.59	¹ /2 8	150.4 171 1	3007 3421
2	1/0	12.03	144.9	³ /16	3.769	45.23	1/4	181.9	3638
	70 1/4	12.07	162.4	1/4	4 176	50 12	^{1/2}	193.1	3862 4330
	·/4 3/o	15.00	102.4	'/4	4.170	30.12	1/2	241.2	4824
	98 1/o	10.00	200.5	^{5/} 16	4.604	55.25	10	267.3	5346
	'12 5/o	10./1	200.0	3/c	E 050	60.64	11	294.7 323.4	6468
	78 3/4	10.42	221.0	98	5.053	00.04	^{1/2}	353.5	7070
2	94	20.21	242.0	7/ ₁₆	5.523	66.28	1/2	304.9 417.6	8353
3	1/-	24.00	200.7	11-	0.044	70 47	13	451.7	9034
	1/2	32.74	392.9	1/2	6.014	72.17	1/2	487.1	9743

4130 AIRCRAFT BARS AMS-S-6758 (Continued)										
\langle	Stock Lengths 12' Approx.									
		Heat	Treated 8	Cold Fi	nished		Normal	ized & Col	d Fin	
	Physical Condition F Physical Condition D Surface Condition 4 Surface Condition 4									
		Est Wei	ght Lhs		Est Weig	tht Lbs		Est Weig	ht Lbs	
Size	е		SIIC, 2003.	Size	Lot. Weię	, E03.	Size	-	10.	
In Inch	es	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	
1/4		.1842	2.210	^{15/} 16	2.590	31.08	1/4	.1842	2.210	
5/1	6	.2878	3.454	1	2.947	35.37	3/8 1/0	.4145	4.973	
3/8		.4145	4.973	1/16	3.327	39.93	9/16	9325	11 19	
1/1 1/2	6	.5641	6.769	1/8	3.730	44.76	5/8	1.151	13.82	
9/4 9/4	~	./308	8.84Z	9/16 1/₄	4.150	49.87	3/4 7/0	1.658	19.89	
5/0	6	1 151	12.92	-74 5/16	5.077	60.93	1 ./8	2.257	35 37	
-76	16	1 393	16 72	3/8	5 572	66 87	1/4	4.605	55.26	
3/4	10	1.658	19.89	7/16	6.090	73.08	3/8	5.572	66.87	
13	' 16	1.946	23.35	1/2	6.631	79.56	3/4	9.026	108.3	
7/8		2.257	27.08	5/8	7.783	93.39	2	11.79	141.5	
		-	4	130 AI	RCRAFT	FLATS				
	\leq	>	Stoo	ck Length	s:Cold Fi	hished - 1	2'			
		Treated		at a baad	HOT ROI	lea - 20°		aa Canditii		
	leat	Treated	& Cold Fi	nisnea —	• Physical or	Condition	i F-Suna		511 4	
]	Nori	malized &	Cold Fin	ished —	Physical (Condition	D-Surfac	e Conditio	n 4	
Size	е	Est. wei	gni, los.	Size	Est. weiş	gnt, Los.	Size	ESI. weig	nt, Los.	
In Inch	es	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	
1/4 v	1/5	4254	5 105	¹ /2 x 5	8.508	102.1	1 ¹ /4 x			
/4 A	3/4	6381	7 657	6	10.21	122.5	11/2	6.381	76.57	
	1	8508	10.21	⁵ /8 x 1	2.127	25.52	13/4	7.445	89.33	
	11/4	1.064	12.76	11/4	2.659	31.91	2	8.508	102.1	
	11/2	1.276	15.31	11/2	3.191	38.29	3	12.76	153.1	
	13/4	1.489	17.87	13/4	3.722	44.67	4	17.02	204.2	
	2	1.702	20.42	2	4.254	51.05	1 ¹ /2 x			
	2 1/2	2.127	25.52	2 ¹ /2	5.318	63.81	13/4	8.933	178.7	
	3	2.552	30.63	3	6.381	76.57	21/2	10.21	122.5	
	4	3.403	40.84	4	8.508	102.1	3	15.31	183.8	
	5	4.254	51.05	5	10.64	127.6	4	20.42	245.0	
³ /8 x	1/2	.6381	7.657	³ /4 x 1	2.552	30.63	5	25.52	306.3	
	3/4	.9572	11.49	11/4	3.191	38.29	6	30.63	367.5	
	1	1.276	15.31	11/2	3.829	45.94	Hot R	olled Norma	alized	
	11/4	1.595	19.14	1 1 1 / 4	4.467	53.60	Surf	ace Conditio	on D on 1	
	11/2	1.914	22.97	2	5.105	01.20	1 v			
	13/4	2.233	26.80	2.12	7.010	10.01	6	20.42	408.4	
	2	2.552	30.63	2%	7.019	04.23	1 ³ /4 x	17.00		
	2 1/2	3.191	38.29	1	10.007	122.5	3	17.89	357.3	
	3	3.829	45.94	5	12 76	153.1	2 x	55.75	/ 14./	
	4	5.105	01.20	6	15 31	183.8	2 ¹ /2	17.02	340.3	
	5	7 657	01.07	1 x 11/4	10.01	4 254	3	20.42	408.4	
1/2 v	3/4	1.007	91.09	51.05		1.201	5	27.23	544.5 680.6	
·/2 X	1 94	1 702	20.42	11/2	5.105	61.26	6	40.84	816.8	
	11/4	2 127	25.52	15/8	5.530	66.36	$2^{1/2} x$	05 50	540 F	
	11/2	2 552	30.63	13/4	5.956	71.47	3	25.52	510.5 680.6	
	13/4	2 978	35 73	2	6.806	81.68	3 x ¯	04.00	000.0	
	2	3,403	40.84	21/2	8.508	102.1	4	40.84	816.8	
		4.254	51.05	3	10.21	122.5	5	51.05 61.26	1021	
	3	5.105	61.26	4	13.61	163.4	4 x	01.20	1220	
	4	6.806	81.68	5	17.02	204.2	6	81.68	1634	
				6	20.42	245.0				

AIRCRAFT ALLOY SHEETS & PLATES AMS 6351 (COND A) UNS G41300 AMS 6345 (COND N) AMS 6350 (COND MA) Color Marking

Hot Rolled Condition N (Normalized)-Corner striped Black and Red Hot Rolled Condition A (Annealed)-Corner striped Green and Yellow Cold Rolled Condition N (Normalized)-Corner striped Pink Cold Rolled Condition A (Annealed)-Corner striped Blue and Gold

4130 sheets and plates are made from quality steel melted to meet the rigid standards of the aircraft industry. They are carefully rolled and inspected to be free from laminations and tears. They are also free from pits, blisters, grooves, and seams which cannot be removed without reducing their thickness below the minimum permissible dimensional tolerance limits.

ANALYSIS

С	Mn	Р	s	Si	Cr	Мо
.28/.33	.40/.60	.025 Max.	.025 Max.	.20/.35	.80/1.10	.15/.25

APPLICATIONS — Intended for general use where welding and moderate tensile properties are required. Sheet is used where 168,000 psi minimum tensile strength is required in sections up to .125" thick, and where proportionately lower strength is required in heavier thickness.

MECHANICAL PROPERTIES — Minimum mechanical properties are as follows:

Condition	Tensile Strength (psi)	Yield Strength (psi)	Elongation % in 2"
A — Annealed	85,000 max.		
N — Normalized - up to .062"	95,000 min.	75,000	8
over .062" to .125"	95,000 min.	75,000	10
over .125" to .187"	95,000 min.	75,000	12
over .187" to .249"	90,000 min.	70,000	15
over .249" to .749"	90,000 min.	70,000	16
over .749" to 1.50"	90,000 min.	70,000	18

HEAT TREATMENT

Normalize-1600°/1700°F Austenitize-1500°/1600°F Quench-Oil Temper-700°/1250°F

4130 AIRCRAFT ALLOY SHEETS AND PLATES

Hot Rolled — Descaled and Oiled Cold Rolled — Oiled

condition N (Normalized) or Condition A (Annealed) Stock Widths: 18", 24", 36", 72", 84", 96" Stock Lengths: 72", 144", 240"

Thickness	Estimated Weight, Lbs.			Thickness		Estimated We	ight, Lbs.
in	Per	Per S	Sheet	in	Per	Per	Plate
Inches	Sq. Ft.	24x72"	36x72"	Inches	Sq. Ft.	36x72"	72x144"
.025	1.020	Sheets 12.2	18.4	.250	10.21 I	Plates 184	735
.032	1.306	15.7	23.5	.312	12.76 15.31	230 276	919 1102
.036	1.469	17.6	26.4	.500	20.42	368 459	1470 1837
.040	1.632	19.6	29.4	.750	30.63	551	2205
.050	2.040	24.5	36.7	1.000	40.84	735	2940
.063	2.570	30.8	46.3	1.125 1.250	45.94 51.05	827 919	3308 3676
.071	2.897	34.8	52.2	1.500	61.26 71 47	1103 1286	4411 5146
.080	3.264	39.2	58.8	2.000	81.68	1470	5881
.090	3.672	44.1	66.1	2.250	102.1	1838	7351
.100	4.080	49.0	73.4	2.750 3.000	112.3 122.5	2021 2205	8086 8820
.125	5.100	61.2	91.8	3.500 4.000	142.9 163 4	2572 2941	10289 11765
.160	6.528	78.3	118	4.500	183.8	3308	13234
.190	7.752	93.0	140	6.000	245.0	4410	17640

4140

AIRCRAFT QUALITY ALLOY BARS

UNS G41400

AMS-S-5626 AMS 6382 AMS 2301

Color Marking

Normalized Bars — Ends painted Gray Annealed Bars — Ends painted Brown

This chromium molybdenum alloy is a deep hardening steel used where strength and impact toughness are required. It has high fatigue strength making it suitable for critical stressed applications at normal as well as elevated temperatures. For increased resistance to wear and abrasion, it may be nitrided.

This grade is a quality product melted under the best of steelmaking practices for aircraft quality steels. It is vacuum degassed to meet the magnetic particle inspection standards of AMS 2301.

ANALYSIS

С	Mn	Р	S	Si	Cr	Мо
.38/.43	.75/1.00	.025 Max.	.025 Max.	.20/.35	.80/1.10	.15/.25

APPLICATIONS — Intended for general use for parts with sections ¹/₂" or less in thickness at time of heat treatment which require a through-hardening steel capable of developing hardness as high as Rockwell "C" 50; also for fittings and forgings of greater hardness or variation in thickness at proportionately lower hardness. It is frequently used in applications in which 8640 is specified.

HARDENABILITY — End-quench hardenability values for this grade are Rockwell "C" 50 minimum at ⁶/16" and Rockwell "C" 44 minimum at ⁹/16".

HEAT TREATMENT

Normalize — 1600°/1700°F Austenitize — 1525°/1600°F Quench — Oil Temper — 700°/1300°F

4140 AIRCRAFT SQUARES

Stock Lengths 12' and 20'

Anne Phys Surf Max	aled & Cold Fin. ical Condition C ace Condition 4 imum Brinell 241		Hot R Phys Surf	olled Normalized sical Condition D ace Condition 1	l
Size in Inches	Estimated Per Foot	Weight, Lbs. 12-Ft. Bar	Size in Inches	Estimated Per Foot	Weight, Lbs. 20-Ft. Bar
3/8 1/2 5/8 3/4 1 1/4 1/2	.4790 .8508 1.329 1.914 3.403 5.318 7.657	5.74 10.21 15.95 22.97 40.84 63.81 91.89	1 ³ /4 2 1/4 1/2 3 1/2 4 5 6	10.42 13.61 17.23 21.27 30.63 41.69 54.45 85.08 122.5	208.4 272.3 344.6 425.4 612.6 833.8 1089 1702 2450

4140 AIRCRAFT BARS AMS-S-5626 (Continued)

0

4140 AIRCRAFT ROUNDS

Stock Lengths 12' to 20'

Ann Phy Sur Ma	Ann. & Cold Finished Physical Condition C Surface Condition 4 Maximum Brinell 241			Hot Rolled Normalized Physical Condition D Surface Condition 1				
Size	Est. W	eight, Lbs.	Size	Est. Wei	ght, Lbs.	Size	Est. We	eight, Lbs.
in Inches	Per Foot	12-Ft. Bar	in Inches	Per Foot	20-Ft. Bar	in Inches	Per Foot	20-Ft. Bar
1/4 5/16 3/8 7/12 9/16 5/8 11/16 3/4 13/16 15/16 I 1/16 1/8 3/16 1/4 5/16 3/8	$\begin{array}{c} .1671\\ .2610\\ .3759\\ .5116\\ .6682\\ .8457\\ 1.044\\ 1.263\\ 1.504\\ 1.765\\ 2.046\\ 2.349\\ 2.673\\ 3.017\\ 3.383\\ 3.769\\ 4.176\\ 4.604\\ 5.053\end{array}$	$\begin{array}{c} 2.005\\ 3.132\\ 4.510\\ 6.139\\ 8.019\\ 10.15\\ 12.53\\ 15.16\\ 18.04\\ 21.17\\ 24.56\\ 28.19\\ 32.07\\ 36.21\\ 40.59\\ 45.23\\ 50.12\\ 55.25\\ 50.64\\ \end{array}$	I 1/8 1/4 3/8 1/2 5/8 3/4 7/8 2 1/8 1/4 3/8 1/2 5/8 3/4 7/8 3/4 7/8 3 1/4 1/2	2.673 3.383 4.176 5.053 6.014 7.058 8.186 9.397 10.69 12.07 13.53 15.08 16.71 18.42 20.21 22.09 24.06 28.23 32 74	53.46 67.66 83.53 101.1 120.3 141.2 163.7 187.9 213.8 241.4 270.6 301.5 334.1 368.4 404.3 441.9 481.1 564.6 654.8	4 1/4 1/2 3/4 5 1/4 1/2 6 1/4 1/2 7 1/2 8 1/2 9 10 1/2	42.77 48.28 54.13 60.31 66.82 73.67 80.86 96.22 104.4 112.9 131.0 150.4 171.1 193.1 216.5 267.3 294.7 323.4	855.3 956.6 1083 1206 1336 1473 1617 1924 2088 2259 2619 3007 3421 3862 4330 5346 5346
7/16	5.523	66.28	3/4	37.59	751.7	12	384.9	7698
1/2 5/8	6.014 7.058	72.17 84 70		_	4140 A	IRCRAI	T FLATS	6
3/4	8.186	98.23			Stock	Length	s: C.F.	— 12'
7/8 7	9.397	112.8		<u> </u>	1.1.0.1		H.R.	<u> </u>
- 1/4	13.53	162.4	Ph	ysical Con	dition C -	– Surfa	ce Conditi	on 4
1/2 3/4	16.71 20.21	200.5 242.6	Cino	Est. We	Maximum ight. Lbs.	Brinell 24	Est. We	ight. Lbs.
3	24.06	288.7	in	Per	12-Ft.	in	Per	20-Ft.
		2	3/e v	FOOL	Bar		Foot	Bar
4140 AIRCRAFT HEXAGONS Stock Lengths 12' Approx. Ann. & Cold Finished Physical Condition C Surface Condition 4			$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	2.552 1.702 2.552 3.403 4.254 5.105 6.806 8.508 10.21	30.63 20.42 30.63 40.84 51.05 61.26 81.68 102.1 122.5	$1^{1/4} x$ $2^{1/2}$ 3^{4} $6^{1/2} x$ $2^{1/2}$ $3^{21/2}$ 3^{4} 5^{5}	8.508 10.64 12.76 17.02 25.52 10.21 12.76 15.31 20.42 25.52	102.1 127.6 153.1 204.2 306.3 122.5 153.1 183.8 245.0 306.3
Size	Est. W	eight, Lbs.	1	2.552	30.63	6	30.63	367.5
in Inches	Per Foot	12-Ft. Bar	1 ¹ /4 1 ¹ /2	3.829	38.29 45.94	Hot Phys.	Rolled No Cond. D. Sı	rmalized
1/2 9/16 5/8 3/4 7/8 15/40	.7368 .9325 1.151 1.658 2.257 2.500	8.842 11.19 13.82 19.89 27.08	2 2 ¹ /2 3 4 5 6	5.105 6.381 7.657 10.21 12.76 15.31	61.26 76.57 91.89 122.5 153.1 183.8	2 x 2 ¹ / ₂ 3 4 5 6	17.02 20.42 27.23 34.03 40.84	340.3 408.4 544.5 680.6 816.8
1/4 1/4 3/8 1/2	2.947 2.947 4.605 5.572 6.631	35.37 55.26 66.87 79.56	1 ¹ /4 1 ¹ /2 1 ³ /4 2	4.254 5.105 5.956 6.806	51.05 61.26 71.47 81.68	2 ¹ /2 x 3 4 6 3 x	25.52 34.03 51.05	510.5 680.6 1021
5/8 3/4 7/8	7.783 9.026 10.36	93.39 108.3 124.3	2 ^{1/2} 3 4 5	8.508 10.21 13.61 17.02	102.1 122.5 163.4 204.2	4 5 6 4 x	40.84 51.05 61.26	816.8 1021 1225
2	11.79	141.5	6	20.42	245.0	6	81.68	1634

E-4340

UNS G43406

AIRCRAFT QUALITY BARS AMS-S-5000 AMS 2301

Color Marking: Ends painted Yellow

E-4340 VAR (CEVM) PREMIUM AIRCRAFT QUALITY AMS 6414 AMS 2300

Color Marking: Ends painted Red with Gold Stripe

This Chromium nickel molybdenum alloy is widely used deep-hardening constructional steel. It is used at a variety of strength levels and at each level possesses remarkable ductility and toughness. With its high alloy content uniform hardness is developed by heat treatment in relatively heavy sections. High fatigue strength makes E-4340 ideal for highly stressed parts. It maintains its strength and hardness at elevated temperatures.

This grade is available as electric furnace vacuum degassed steel to meet the high aircraft quality standards of AMS 2301. Thus, it is suitable for the fabrication of parts which may be subjected to magnetic particle inspection.

This grade is also available as a Premium Aircraft Quality product. The regular aircraft quality material is remelted in a vacuum using consumable electrode practice. This results in a much cleaner steel meeting the magnetic particle test requirements of AMS-2300 and insures a steel of the highest quality with excellent transverse ductility and toughness at high strength levels.

ANALYSIS

с	Mn	Р	S	Si	Cr	Ni	Мо
.38/.43	.65/.85	.025 Max.	.025 Max.	.15/.30	.70/.90	1.65/2.00	.20/.30

APPLICATIONS — Intended for parts with sections 3¹/₂" or less in thickness at time of heat treatment, which require a through-hardening steel capable of developing minimum hardness of Rockwell "C" 30. Premium Aircraft Quality is intended for use in the manufacturing of highly stressed parts at higher strength levels, such as 260/280,000 psi and where a much cleaner steel is desired.

HARDENABILITY — End-quench hardenability values for this grade are Rockwell "C" 50 minimum at ²⁰/16" and Rockwell "C" 45 minimum at ³²/16".

HEAT TREATMENT

Normalize — 1650°F Austenitize — 1500°F Quench — Oil, 140°F maximum Temper — 400/500°F for 260,000 psi strength level 725°F minimum for lower strength levels

E-4340 AIRCRAFT BARS AMS-S-5000 (Continued) **E-4340 AIRCRAFT SQUARES**

		Stock Lengths	: Cold Finishe	d — 12'		
Norm Phys. Co Maxi	n. & Temp. C.F. nd. E, Surf. Conc imum Brinell 265	1. 4	Hot Rolled — 20 H.R. Norm. & Temp. Phys. Cond. E. Surf. Cond. 1 Maximum Brinell 235			
Size in Inches	Estimated Per Foot	Weight, Lbs. 12-Ft. Bar	Size in Inches	Estimated Per Foot	<u>Weight, Lbs.</u> 20-Ft. Bar	
5/8	1.329	15.59	1 ³ /4 2	10.42 13.61	208.4 272.3	
3/4	1.914	22.97	1/4 1/2	17.23 21.27	344.6 425.4	
1	3.403	40.84	3/4 3	25.74 36.63 41.69	514.7 612.6 833.8	
1/4	5.318	63.81	4	54.45 85.08	1089 1702	
1/2	7.657	91.89	6	122.5	2450	

E-4340 AIRCRAFT ROUNDS **Special Quality**

Stock Lengths 12' and 20'

Norr	n. & Tem	ip. C.F.	H.R. Norm. & Temp.							
Phys. C	ond. E, Su	Inf. Cond. 4	Phys. Cond. E. Surf. Cond. 1							
IVIAX	Est. W	eight Lbs		Est. We	viaximum Bri	inell 235	Est. Weight., Lbs.			
Size	Dor	12 54	Size	Dor	20 Et	Size	Dor	20 Et		
Inches	Foot	Bar	Inches	Foot	Bar	Inches	Foot	Bar		
1/4	.1671	2.005	3/4	1.504	30.07	4	42.77	855.3		
5/16	.2610	3.132	7/8	2.046	40.93	1/4	48.28	965.6		
9/8 7/16	.3759	4.510	1	2 673	53 /6	1/2	54.13	1083		
1/2	.6682	8.019	1/-	2.070	07.00	3/4	60 31	1206		
⁹ /16	.8457	10.15	'/8	3.383	67.66	5	66.82	1336		
5/8	1.044	12.53	1/4	4.176	83.53	1/.	72.67	1474		
' '/16 3/₄	1.263	15.16 18.04	3/8	5.053	101.1	1/4	13.07	14/4		
13/ ₁₆	1.765	21.17	1/2	6.014	120.3	1/2	80.86	1617		
7/8	2.046	24.56	5/0	7 059	1/1 2	3/4	88.37	1767		
^{15/} 16	2.349	28.19	-70	7.050	141.2	6	96.22	1924		
1 1/10	2.673	32.07	9/4	8.186	163.7	1/4	104.4	2088		
1/8	3 383	40.59	7/8	9.397	187.9	1/2	112.9	2259		
3/16	3.769	45.23	2	10.69	213.8	3/4	121.8	2436		
1/4	4.176	50.12	1/8	12 07	241 4	7	131.0	2619		
°/16 3/₀	4.604	55.25 60.64	1/4	12 52	270.6	1/2	150.4	3007		
7/16	5.523	66.28	.74	13.55	270.0	0	171 1	2421		
1/2	6.014	72.17	3/8	15.08	301.5	o	1/ 1.1	3421		
^{9/} 16	6.526	78.31	1/2	16.71	334.1	1/2	193.1	3862		
5/8 3/₄	7.058	84.70	5/8	18.42	368.4	3/4	204.6	4093		
-/4 7/8	9.397	112.8	3/4	20 21	404 3	9	216.5	4330		
2	10.69	128.3	7/0	22.00	441.0	1/2	241.2	4824		
1/8	12.07	144.8	.10	22.09	441.9	10	267.3	5346		
1/4 3/o	13.53	162.4	3	24.06	481.1	1/2	294.7	5894		
1/2	16.71	200.5	1/8	26.10	522.0	11	323.4	6468		
3/4	20.21	242.6	1/4	28.23	564.6	1/2	353.5	7070		
7/8	22.09	265.1	3/8	30.45	608.9	12	384 Q	7698		
3 1/4	24.06	288.7	1/2	32.74	654.8	1/0	117 C	0252		
1/2	32.74	392.9	-1Z Ev	52.14	700 -	1/2	417.0	8353		
3/4	37.59	451.0	२/८	35.12	702.5	13	451.7	9034		
4	42.77	513.2	3/4	37.59	751.7	14	523.9	10478		

E-4340 AIRCRAFT HEXAGONS

Stock Lengths 12' Approx.

Normalized & Tempered Cold Finished Physical Condition E - Surface Condition 4 Maximum Brinell 265

Size	Estimated	Weight, Lbs.	Size	Estimated	Weight, Lbs.
in Inches	Per Foot	12-Ft. Bar	in Inches	Per Foot	12-Ft. Bar
1/2	.7368	8.842	1 1/4	4.605	55.26
5/8	1.151	13.82	3/8	5.572	66.87
3/4	1.658	19.89	1/2	6.631	79.56
7/8	2.257	27.08	5/8	7.783	93.39
^{15/} 16	2.590	31.08	3/4	9.026	108.3
1	2.947	35.37	2	11.79	141.5
1/16	3.327	39.93	1/4	14.92	179.0
1/8	3.730	44.76	1/2	18.42	221.0

E-4340 AIRCRAFT FLATS

Stock Lengths 12' and 20'

	Normalized & Tempered Cold Finished Physical Condition E - Surface Condition 4 Maximum Brinell 265						H.R. Norm. & Temp. Phys. Cond. E. Surf. Cond. 1 Maximum Brinell 235		
Size	Est. W	eight., Lbs.	Size	Est. We	ight., Lbs.	Size	Est. Weią	ght., Lbs.	
In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	20-Ft. Bar	
¹ /4 x			1 x			11/2 x			
1	.8508	10.21	1 ¹ /4	4.254	51.05	2 ¹ /2	12.76	255.2	
2	1.702	20.42	11/2	5.105	61.26	4	20.42	408.4	
³ /8 x			1 ³ /4	5.956	71.47	2			
1	1.276	15.31	2	6.806	81.68	2 X	17.00	240.2	
11/2	1.914	22.97	2 ¹ /2	8.508	102.1	Z 1/2	17.02	340.3	
2	2.552	30.63	3	10.21	122.5	3	20.42	408.4	
¹ /2 x			4	13.61	163.4	31/2	23.82	476.4	
1	1.702	20.42	5	17.02	204.2	4	27.23	544.5	
11/2	2.552	30.63	6	20.42	245.0	5	34.03	680.6	
2	3.403	40.84				6	40.84	816.8	
2 1/2	4.254	51.05	1 ¹ /4 x			$2^{1/2}$ x			
3	5.105	61.26	11/2	6.381	76.57	2	25 52	510 F	
4	6.806	81.68	2	8.508	102.1	01/-	20.02	510.5	
5	8.508	102.1	21/2	10.64	127.6	31/2	29.78	595.6	
5/2	10.21	122.5	3	12.76	153.1	4	34.03	680.6	
⁷ /8 X	0 107	25 52	31/2	14.89	178.7	6	51.05	1021	
1 11/0	2.127	20.02	4	17.02	204.2	3 x			
2	1 254	51.05	5	21.27	255.2	1	10.84	916 9	
2 3/4 ¥	4.234	51.05	6	25.52	306.3	-	40.04	010.0	
-74 A 1	2 552	30.63				5	51.05	1021	
11/2	3 829	45 94	1 ¹ /2 x			6	61.26	1225	
2	5 105	61 26	2	10.21	122.5	3 ¹ /2 x			
21/2	6.381	76.57	2 ¹ /2	12.76	153.1	6	71 47	1420	
3	7 657	91.89	3	15.31	183.8	0	/ 1.4/	1425	
4	10 21	122.5	4	20.42	245.0	4 x			
5	12.76	153.1	5	25.52	306.3	5	68.06	1361	
6	15.31	183.8	6	30.63	367.5	6	81.68	1634	
•			-						

E-4340 AIRCRAFT ALLOY PLATES UNS G43406 AMS 6359

Color Marking: Corner striped Aluminum

These plates are rolled from highest quality steel, manufactured by the electric furnace process, to meet the rigid standards of the aircraft industry. They are uniform in quality and condition and are free from internal and external defects that would be detrimental to the fabrication or performance of parts.

The plates are produced by rolling on large "sheared plate" mills. As the slab is reduced in thickness, it is cross-worked to produce a quality plate that is sound and dense with excellent properties in both longitudinal and transverse directions.

ANALYSIS

С	Mn	Р	S	Si	Cr	Ni	Мо
.38/.43	.60/.80	.025 Max.	.025 Max.	.15/.35	.70/.90	1.65/2.00	.20/.30

APPLICATIONS — Intended for use in the manufacturing of highly stressed aircraft parts requiring good hardenability as well as parts requiring high ultimate tensile strength.

FORMABILITY — This material in thicknesses up to ³/4" shall withstand being bent 90° around a diameter equal to its nominal thickness, both perpendicular and parallel to the direction of rolling.

HEAT TREATMENT — To develop the highest strength (260,000 psi minimum ultimate) with the best combination of mechanical properties in both transverse and longitudinal directions, the following thermal treatment is recommended:

Normalize — 1650°F ± 25°

Austenitize — 1500°F ± 25°

Quench — Oil, 140°F maximum

Temper — 400/500°F for 260,000 psi strength level

725°F minimum for lower strength levels

For lower strength levels, higher tempering temperatures may be used.

	E-4340 AIRCRAFT ALLOY PLA Hot Rolled, Annealed and Descale	TES ed
Thickness	Per	Per
Inches	Inch	Foot
.250	.0709	10.21
.375	.1064	15.31
.500	.1418	20.42
.625	.1773	25.52
.750	.2127	30.63
.875	.2481	35.73
1.00	.2836	40.84
1.25	.3545	51.05
1.50	.4254	61.26
1.75	.4963	71.47
2.00	.5672	81.68
2.25	.6381	91.89
2.50	.7090	102.1
2.75	.7799	112.3
3.00	.8508	122.5
3.50	.9926	142.9
4.00	1.1344	163.4
4.50	1.2762	183.8
5.00	1.4180	204.2
6.00	1.7016	245.0

4620

AIRCRAFT QUALITY ALLOY BARS

UNS G46200

AMS 6294 AMS 2301

Color Marking: Ends painted Purple

This nickel molybdenum alloy is a carburizing steel capable of developing high case hardness and core toughness. It responds well to carburizing and hardening to produce a case of uniform hardness with relative freedom from distortion.

It is produced by the best steelmaking practice for aircraft quality steels, and is then vacuum degassed to meet the magnetic particle inspection standards of AMS 2301.

ANALYSIS

с	Mn	Р	s	Si	Ni	Мо
.17/.22	.45/.65	.025 Max.	.025 Max.	.15/.35	1.65/2.00	.20/.30

APPLICATIONS — Intended for use in the manufacturing of carburized parts where core strength and toughness is desired.

HARDENABILITY — Test Specimens ¹/8" and ³/8" in thickness will develop Rockwell "C" hardness of 32 to 48 when normalized and oil quenched from 1550°F.

HEAT TREATMENT

Normalize — 1700°F Carburize — 1700°F Austenitize — 1550°F Quench — Oil Temper — 300°F for maximum strength and hardness 450°F for maximum core toughness

\bigcirc	

4620 AIRCRAFT QUALITY ROUNDS

Stock Lengths 12' Approx.

Cold Drawn Physical Condition B Surface Condition 4			Hot Rolled Physical Condition B Surface Condition 1						
Size	Est. W	eight., Lbs.	Size	Est. We	eight., Lbs.	Size	Est. We	ight., Lbs.	
Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	
^{5/} 16	.2610	3.132	1 1/8	3.383	40.59	3	24.06	288.7	
3/8	.3759	4.510	1/4	4.176	50.12	1/4	28.23	338.8	
⁷ /16	.5116	6.139	3/8	5.053	60.64	1/2	32.74	392.9	
1/2	.6682	8.019	1/2	6.014	72.17	3/4	37.59	451.0	
9/16	.8457	10.15	5/8	7.058	84.70	4	42.77	513.2	
5/8	1.044	12.53	3/4	8.186	98.23	1/4	48.28	579.3	
11/16	1.263	15.16	7/8	9.397	112.8	1/2	54.13	649.5	
3/4	1.504	18.04	2	10.69	128.3	3/4	60.31	723.1	
7/8	2.046	24.56	1/8	12.07	144.8	5	66.82	801.9	
1	2.673	32.07	'/4 3/o	15.00	102.4	1/2	80.86	970.2	
1/8	3.383	40.59	1/2	16.71	200.5	6	96.22	1155	
1/4	4.176	50.12	5/8	18 42	221.0	1/2	112.9	1355	
3/8	5.053	60.64	3/4	20.21	242.6	7	131.0	1572	
1/2	6.014	72.17	7/8	22.09	265.1	8	171.1	2053	

9310

UNS G93106

MIL-S-7393 AMS 6260 AMS 2301

Color Marking: Ends painted Red and White

9310 VAR (CEVM)

PREMIUM AIRCRAFT QUALITY ALLOY BARS

MIL-S-7393 AMS 6265 AMS 6267 AMS 2300

Color Marking: Ends painted Purple with Yellow Stripe

This chromium nickel molybdenum alloy is primarily a carburizing grade capable of attaining high case hardness with high core strength and toughness. Its high alloy content makes it suitable for components with relatively heavy sections. The combination of high alloy content and low carbon makes it possible to achieve a high core hardness with a narrow hardness range between heavier and thinner sections.

It is an alloy that offers strength with excellent toughness and ductility, and it may be used to advantage without carburizing. Carburized, a highly wear resistant case is produced which is useful in extremely difficult applications.

The AIRCRAFT QUALITY grade is produced following the best electric furnace steel making practices. It is vacuum degassed to insure meeting the magnetic particle standards of AMS 2301.

This grade is also available as a Premium Aircraft Quality product using the consumable electrode vacuum remelting process. This results in a much cleaner steel meeting the magnetic particle test requirements of AMS 2300 and insures a steel of the highest quality with excellent transverse ductility and toughness at high strength levels.

ANALYSIS

С	Mn	Р	S	Si	Cr	Ni	Мо
.07/.13	.40/.70	.025 Max.	.025 Max.	.15/.35	1.00/1.40	3.00/3.50	.08/.15

APPLICATIONS — Intended primarily for critical carburized parts requiring high minimum core hardness with a relatively narrow hardness range. Also where rigid magnetic particle inspection standards are utilized in final inspection.

Premium Aircraft Quality is used where even more stringent cleanliness is required, as well as for highly stressed parts requiring greater transverse ductility and toughness.

HARDENABILITY — End-quench hardenability values are Rockwell "C" 43 maximum at ¹/₁₆" and Rockwell "C" 31 minimum at ⁶/₁₆".

HEAT TREATMENT

Normalize — 1700°F Carburize — 1700°F Austenitize — 1500°F Quench — Oil Temper — 300°F for maximum strength and hardness 450°F for maximum core toughness

9310 AIRCRAFT ROUNDS Normalized & Tempered or Annealed Stock Lengths 12' to 20' Approx.

Size	Est. We	ight, Lbs.	Size Est. Weight, Lbs.			Size Est. Weig		ight, Lbs.
in Inches	Per Foot	12-Ft. Bar	in Inches	Per Foot	20-Ft. Bar	in Inches	Per Foot	20-Ft. Bar
Cold Drawn or C.G. Physical Condition E Surface Condition 4			Phy: Sur	Hot Rolle sical Cond face Cond	d ition E lition1	Hot Rolled Physical Condition E Surface Condition1		
1/2	.6682	8.019	1 ¹ /2	6.014	120.3	5	66.82	1336
			5/8	7.058	141.2	1/4	73.67	1473
5/ ₈	1.044	12.53	3/4	8.186	163.7	1/2	80.86	1617
3/4	1 504	18 04	2	10.69	213.8	3/4	88.37	1767
/4	1.004	10.04	1/8	12.07	241.4	6	96.22	1924
7/ ₈	2.046	24.56	1/4	13.53	270.6	1/4	104.4	2088
			3/8	15.08	301.5	1/2	112.9	2259
1	2.673	32.07	1/2	16.71	334.1	3/4	121.8	2436
1/6	3 383	40 59	5/8	18.42	368.4	7	131.0	2610
10	0.000	40.00	3/4	20.21	404.3	• 1/5	150.4	3007
1/4	4.176	50.12	3	24.06	481.1	92	171 1	2424
			1/4	28.23	564.6	8	171.1	3421
3/ ₈	5.053	60.64	1/2	32.74	654.8	1/2	193.1	3862
			3/4	37.59	751.7	3/4	204.6	4093
1/2	6.014	72.17	4	42.77	855.3	9	216.5	4336
5/。	7 058	84 70	1/4	48.28	965.6	1/2	241.2	4824
10	1.000	04.70	1/2	54.13	1083	3/4	254.1	5082
3/4	8.186	98.23	3/4	60.31	1206	10	267.3	5346

E-52100 AIRCRAFT QUALITY ALLOY BARS UNS G15216 G52986 AMS-S-7420 AMS 6440 AMS 2301 ASTM A295

Color Marking: Ends painted Gold and Green

This high carbon, high chromium alloy is produced by the electric furnace process and then vacuum degassed to meet the rigid standards of the aircraft industry for bearing applications. This steel develops high hardness and has exceptional resistance to wear and abrasion. In smaller sections it has high compressive strength. Because of high carbon content, bars are furnished in the spheroidize annealed condition in order to provide the best possible machinability.

ANALYSIS

С	Mn	Р	S	Si	Cr
.95/1.10	.25/.45	.025 Max.	.025 Max.	.15/.35	1.30/1.60

APPLICATIONS — Intended for use in ball or roller bearings and similar applications.

HEAT TREATMENT

Anneal — 1400°F/1450°F very slow cool Austenitize — 1525°F/1575°F Quench — Oil, 140°F maximum Temper — 350°/450°F for maximum hardness

E-52100 AIRCRAFT ROUNDS Spheroidize Annealed Stock Lengths 12' and 20'

	Ph	Cold I iysical C	Drawn Conditi	on E		Hot Rolled Physical Condition E						
Size	Est. V	Vt., Lbs.	Size	Est. W	/t., Lbs.	Size	Est. W	t., Lbs.		Est. W	t., Lbs.	
in Inches	Per Foot	12-ft. Bar	in Inches	Per Foot	12-ft. Bar	in Inches	Per Foot	20-ft. Bar	in Inches	Per Foot	20-ft. Bar	
1/4	.1671	2.005	1 1/16	3.017	36.21	1 1/4	4.176	83.53	4 1/4	48.28	965.6	
^{5/} 16	.2610	3.132	1/8	3.383	40.59	3/4	8.186	163.7	1/2	54.13	1083	
3/8	.3759	4.510	3/16	3.769	45.23	7/8	9.397	189.9	3/4	60.31	1206	
⁷ /16	.5116	6.139	1/4	4 176	50 12	2	10.69	213.8	5	66.82	1336	
1/2	6682	8 010	5/10	4.004	55.05	1/4	13.53	270.6	1/4	73.67	1473	
.12	.0002	0.013	9/16	4.604	55.25	1/2	16.71	334.1	1/2	80.86	1617	
9/16	.8457	10.15	3/8	5.053	60.64	5/8	18 42	368.4	3/4	88.37	1767	
5/8	1.044	12.53	7/ ₁₆	5.523	66.28	3/4	20.21	404.2	6	96.22	1924	
11/16	1.263	15.16	1/2	6.014	72.17	94	20.21	404.5	1/4	104.4	2088	
3/4	1 504	18 04	5/0	7 059	<u>84 70</u>	//8	22.09	441.9	1/2	112.9	2259	
101	4 705	04.47	90	1.000	04.70	3	24.06	481.1	7	131.0	2619	
13/16	1.765	21.17	3/4	8.186	98.23	1/4	28.23	564.6	1/2	150 4	3007	
7/8	2.046	24.56	7/8	9.397	112.8	1/2	32.74	654.8	8	171 1	3421	
^{15/} 16	2.349	28.19	2	10.69	128.3	3/4	37.59	751.7	1/2	193.1	3862	
1	2.673	32.07	3	24.06	288.7	4	42.77	855.3	9	216.5	4330	
			1						1			

4330 MODIFIED V A R PREMIUM AIRCRAFT QUALITY BARS AMS 6411 AMS 6427 AMS 2300

Color Marking: Ends painted gold with Pink Stripe

This Grade is a chromium-nickel-molybdenum alloy modified by the addition of vanadium. It is a high strength alloy with good ductility and impact strength. The lowering of the carbon content from the more common .40 percent level improves its toughness and ductility, and it also limits the strength level to which the alloy can be used.

It is available as a consumable electrode vacuum remelted product. This method of melting improves the transverse ductility of the grade at its high usable strength. It also improves the non-metallic cleanliness, making it the most appropriate for the fabrication of parts subjected to magnetic particle inspection.

ANALYSIS

		Р	S					
С	Mn	Max.	Max.	Si	Cr	Ni	Мо	V
.23/.33	.80/1.00	.015	.015	.20/.35	.75/.95	1.65/2.00	.35/.50	.05/.10

APPLICATIONS — Intended for high strength structural applications with good ductility and relatively high impact strength. In order to insure through-hardening characteristics when oil quenched, it may be used in section thicknesses up to 2¹/₂" diameter round at time of heat treatment.

HARDENABILITY — End-quench hardenability values are Rockwell "C" 49 minimum at ¹⁴/₁₆" and Rockwell "C" 45 minimum at ²⁴/₁₆".

MECHANICAL PROPERTIES — Response to heat treatment and transverse ductility of this alloy are evaluated by means of tension tests performed on samples taken from mid-radius location of the top and bottom of marker billets. After heat treatment, the following transverse tensile properties are attained:

			% Reducti	on of Area	
Cross Section Area	Tensile Strength	Yield Strength	Average All	Lowest Single	
Square Inches	psi min.	psi. min.	Tests	Test	
Up to 144", incl.	220,000	185,000	35 min.	30	
Over 144" to 225"	220,000	185,000	30 min.	25	
Over 225"	220,000	185,000	25 min.	20	
			Elongation % in 2"	Reduction of Area %	V-Charpy Ft. Lbs.
Longitudinal properties	220,000	185,000	10 min.	35 min.	15 min.

HEAT TREATMENT

Normalize — 1700°F; Austenitize — 1600°F; Quench — Oil, 150°F maximum Temper — 575°F minimum for 220,000 min. psi strength level 850°F minimum for 180,000 min. psi strength level

4330 MOD VAR PREMIUM AIRCRAFT OUALITY ROUNDS

0		rmalized a Physical C Stock Length	and Tempe condition E is 12' Approx.	red	noonbo
Size	Estimated V	Veight, Lbs.	Size	Estimated V	Veight, Lbs.
in	Per	12-Ft.	in	Per	12-Ft.
Inches	Foot	Bar	Inches	Foot	Bar
С	enterless Ground	l		Hot Rolled	
Si	urface Condition 4	4	S	Surface Condition	1
1/2	.6682	8.019	2	10.69	128.3
5/8	1.044	12.53	1/4	13.53	162.4
3/4	1.504	18.04	3/8	<u>15.08</u>	180.9
7/8	2.046	24.56	1/2	16.71	200.5
1	2.673	32.07	5/8 3/₄	18.42	221.0
1/8	3.383	40.59	7/8	22.09	265.1
1/4	4.176	50.12	3	24.06	288.7
3/8	5.053	60.64	⁻ 1/4	28.23	338.8
1/2	6.014	72.17	1/2	32.74	392.9
5/8	7.058	84.70	4	42.77	513.2
3/4	8,186	98.23	5 1/2	54.13	049.5 801 0
7/8	9.397	112.8	6	96.22	1155
			Ū	00.22	1100

300M V A R (CEVM) (E4340 Modified) AMS 6417 AMS 2300

Color Marking: Ends painted Brown and Yellow Stripe

This steel is a chromium-nickel-molybdenum alloy similar to 4340, but modified by the addition of vanadium and a higher silicon content. The silicon acts to displace the 500° F temper embrittlement range to higher temperatures. The overall alloy content acts to produce higher strength levels without the necessity of increasing the carbon content. Thus, this alloy offers a combination of toughness and ductility at high strength levels. It is a deep hardening steel with excellent torque properties. It has high fatigue and creep characteristics and maintains its strength at moderately high temperatures.

This grade is available as a consumable electrode vacuum remelted product. This insures a steel of the highest quality with excellent transverse ductility and toughness at high strength levels. It also insures the non-metallic cleanliness of this alloy meeting AMS 2300, thus making it most suitable for the fabrication of parts subjected to magnetic particle inspection.

ANALYSIS

		Р	S					
С	Mn	Max.	Max.	Si	Cr	Ni	Мо	v
.40/.43	.65/.90	.010	.010	1.45/1.80	.70/.95	1.65/2.00	.35/.45	.05/.10

APPLICATIONS — Intended for ultra high strength structural applications with sections 3" or less in thickness at the time of heat treatment in order to insure through-hardening characteristics.

HARDENABILITY — End-Quench hardenability values are Rockwell "C" 55 minimum at 8/16" and Rockwell "C" 53 minimum at ²⁰/16".

MECHANICAL PROPERTIES — Response to heat treatment and transverse ductility of this alloy are assured by means of tension tests performed on samples taken from mid-radius and center location of the top and bottom of billets or bars. After heat treatment, the following properties are attained:

			% Reduction	% Reduction of Area		
Nominal	Tensile Strength	Yield Strength	Average All Tests	Lowest Single		
Up to 100 sq. in.	280,000	230,000	30 min.	25		
100 to 144 sq. in.	280,000	230,000	25 min.	20		

HEAT TREATMENT

Normalize-1700° F Austenitize-1600° F Quench-Oil, 140° F maximum Temper-500°/600° F for 270,000 psi strength level

Q	300M VAR Aircraft Rounds Normalized and Tempered Physical Condition E Stock Lengths 12' Approx.												
Centerless Ground Hot Rolled Surface Condition 4 Surface Condition 1													
Size	Est. We	eight., Lbs.	Size	Est. We	Est. Wei	ght., Lbs.							
In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar	In Inches	Per Foot	12-Ft. Bar					
1/2 3/4 1 1/8 1/4 3/8 1/2 5/8 3/1	.6682 1.504 2.673 3.383 4.176 5.053 6.014 7.058	8.019 18.04 32.07 40.59 50.12 60.64 72.17 84.70	1 1/4 7/16 1/2 5/8 3/4 2 1/4 1/2	4.176 5.523 6.014 7.058 8.186 10.69 13.53 16.71	50.12 66.28 72.17 84.70 98.23 128.3 162.4 200.5	3 1/4 1/2 3/4 4 1/4 1/2 5 1/2	24.06 28.23 32.74 37.59 42.77 48.28 54.13 66.82 80.86	288.7 338.8 392.9 451.0 513.2 579.3 649.5 801.9 970.2					
<i>4</i> /4	0.180	98.23	୬/4	20.21	242.6	6	96.22	1155					

NITRIDING #3 (135 Modified) AIRCRAFT QUALITY ALLOY BARS AMS-S-6709 AMS 6472 AMS 2301

Color Marking: Ends painted Blue and Orange

Nitriding #3 (135 Modified) is a chromium-molybdenum aluminum alloy steel that can be heat treated to develop high core strength and then nitrided to produce extremely high case hardness. This combination of properties is useful when requirements call for high surface hardness for wear and abrasion, for strength and hardness at temperatures up to approximately 1000°F, and for increased fatigue strength and resistance to corrosion.

ANALYSIS

Mn D S Si С Cr Mo Al .38/.43 .50/.70 .025 Max. .025 Max. .20/.40 1.40/1.80 . 3 0 / . 4 0 .95/1.30

APPLICATIONS — Used for nitrided parts requiring high surface hardness, resistance to heat, and less distortion than parts fabricated from steel requiring quenching to case harden.

HARDENABILITY - End quench hardenability values are Rockwell "C" 50 maximum at 8/16" and Rockwell "C" 45 minimum at 12/16".

MECHANICAL PROPERTIES — The following properties apply to material in Physical Conditions F (hardened and tempered):

Tensile Strength	Yield Strength	Elongation	Reduction
(psi)	(psi)	in 2"	of Area
112,000 Min.	90,000 Min.	16% Min.	50% Min.

NITRIDING #3 (Modified) AIRCRAFT QUALITY ROUNDS

Stock Lengths 12' Approx.

Н	l eat Tre Ph Sເ	eated an iysical C urface C	nd Cole Conditio	d Finisl on E on 4	hed	Hot Rolled Physical Condition E Surface Condition 1						
Size in Inches	Est. V Per Foot	/t., Lbs. 12-ft. Bar	Size in Inches	Est. W Per Foot	Vt., Lbs. 12-ft. Bar	Size in Inches	Est. W Per Foot	' <u>t., Lbs.</u> 20-ft. Bar	Size in Inches	Est. W Per Foot	t., Lbs. 20-ft. Bar	
3/8	.3759	4.510	1 3⁄/8	5.053	60.64	1 ⁵ /8	7.058	141.2	3 1/4	28.23	564.6	
1/2	.6682	8.019	1/2	6.014	72.17	3/4	8.186	163.7	1/2	32.74	654.8	
5/8	1.044	12.53	5/0	7 058	84 70	7/8	9.397	189.9	3/4	37.59	751.7	
3/4	1.504	18.04	-76	7.000	04.70	2	10.69	213.8	4	42.77	855.3	
7/8	2.046	24.56	3/4	8.186	98.23	1/8	12.07	241.4	1/4	48.28	965.6	
1	2 673	32 07	2	10.69	128.3	1/4	13.53	270.6	1/2	54.13	1083	
	2.070		1/4	13 53	162.4	3/8	15.08	301.5	5	66.82	1336	
1/8	3.383	40.59	74	10.00	102.4	1/2	16.71	334.1	1/2	80.86	1617	
^{3/} 16	3.769	45.23	1/2	16.71	200.5	3/4	20.21	404.3	6	96.22	1924	
1/4	4.176	50.12	3/4	20.21	242.6	3	24.06	481.1	1/2	112.9	2259	

HS 220-18 SPECIAL QUALITY AIRCRAFT ALLOY BARS AMS S 7108 AMS 6418 AMS 2301 DMS 1841

Color Marking: Ends painted Purple with Pink Stripe

HS 220-18 is a low carbon, high silicon, chromium-nickel-molybdenum alloy steel. It was one of the first grades developed in the high strength class, combining strength with toughness and ductility. It has relatively high impact resistance because of its low notch sensitivity at the high hardness at which this alloy is commonly used. It is available as a basic electric furnace air melt and vacuum degassed product to meet the high aircraft quality standards of AMS 2301. In addition, this alloy is produced as Special Aircraft Quality to insure transverse ductility and toughness.

ANALYSIS

		Р	S				
С	Mn	Max.	Max.	Si	Cr	Ni	Мо
.23/.28	1.20/1.50	.025	.025	1.30/1.70	.20/.40	1.65/2.00	.35/.45

APPLICATIONS — Intended for use in the manufacturing of parts and components requiring high strength and good ductility with relatively high impact strength at room and lower temperatures.

HARDENABILITY — End-quench hardenability values are Rockwell "C" 47 minimum at ⁸/₁₆" and Rockwell "C" 45 minimum at ²⁴/₁₆".

MECHANICAL PROPERTIES — Response to heat treatment and transverse ductility of this alloy are assured by tension tests performed on samples taken from the mid-radius and center location of the top and bottom of the first, middle, and last ingots of a heat. Results of the center tests are for information only. Results of the mid-radius tests after heat treatment are:

Tensile Strength (psi)	Yield Strength (psi)	Elonga- tion in 2" %	% Reduction of Area		
			Average of All Tests	Lowest Single Value	V-Charpy Ft. Lbs.
220/245,000	185,000 Min.	5 Min.	20 Min.	15	12 Min.

HEAT TREATMENT

Normalize — 1725°F Austenitize — 1600°F Quench — Oil, 140°F maximum Temper — 550/575°F

0	\supset	Physical C Surface C Stock Length	Condition E Condition I Is 20' Approx.		
Size	Estimated	Estimated Weight, Lbs.		Estimated Weight, Lbs.	
in Inches	Per Foot	20-Ft. Bar	in Inches	Per Foot	20-Ft. Bar
1/2	.6682	13.36			
3/4	1.504	30.07	2	10.69	213.8
1	2.673	53.46	1/4	13.53	207.6
1/4	4 176	83 53	1/2	16.71	334.1
1/2	6 014	120.3	3/4	20.21	404.3
5/8	7 058	141.2	3	24.06	481.1
3/4	8 186	163.7	1/2	32.74	654.8
7/8	9.397	187.9	3/4	37.59	751.7
10	0.001	107.0	4	42.77	855.3

HS 220-18 Aircraft Rounds Hot Rolled Normalized and Tempered

For all your metal needs... Call EMJ First! (800) 3EMJ-EMJ

© Copyright 2007 Earle M. Jorgensen Company